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Abstract

Identifying and quantifying metabolites in complex biological samples is one of the most challenging
aspects of metabolomics. Recently, several important advances in databases, software, instrumentation,
and laboratory techniques have greatly simplified the most laborious tasks of metabolite identification and
have made quantification more reliable. These technological advances have made bioanalytically oriented
studies a feasible alternative to the statistics-based methods commonly used for metabolomics. We discuss
the tools that have become most important in our own research and comment on emerging technologies
that may play an important role in future studies. In addition, we provide practical guidelines for designing
studies and give the step-by-step protocols used in our lab for sample preparation, metabolite identification,
and accurate quantification of molecules.
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1. Bioanalytical
Metabolomics

All metabolomics studies involve elements of natural products
chemistry, analytical chemistry, and statistics. The degree to which
each of these elements is weighted influences experimental design
and the type of data that is ultimately derived from a study.
Currently, most metabolomics investigations emphasize statistics.
Spectroscopic data derived from these studies are deciphered by
using sophisticated multivariate tools, and potential biomarkers are
identified on the basis of their statistical significance (1). Although
multivariate analyses are effective for classifying samples, they do
not provide a transparent mechanism for identifying and quantify-
ing individual metabolites.
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Bioanalytical metabolomics is an emerging strategy that
emphasizes comprehensive metabolite assignment, accurate mea-
sures of concentration, and transparent data analyses that minimize
the use of statistics. Although these characteristics are similar to
traditional metabolism research (2, 3), bioanalytical metabolomics
differs from traditional studies in scope. Unfractionated biological
samples contain hundreds (NMR) to thousands (MS) of observable
signals. Whereas traditional methods restrict analyses to a few
predetermined metabolites, bioanalytical metabolomics attempts
to identify and quantify all of the observable signals. Until recently,
this type of comprehensive metabolite profiling was too labor
intensive to be practical in routine analyses. However, the tools
and techniques discussed in this chapter have dramatically simpli-
fied the laborious aspects of data analysis and have made bioanaly-
tical metabolomics a practical alternative to statistics-based studies.

2. Sample
Preparation

Consistent sample preparation is an important component of bio-
analytical metabolomics. Although a wide variety of techniques are
effective (Chap. 2), no protocol is appropriate for all metabolites.
Extraction conditions, such as solvent temperature and hydro-
phobicity, directly affect the molecules that can be identified and
quantified in a study. Aqueous solvents extract hydrophilic mole-
cules; nonpolar solvents extract hydrophobic metabolites; harsh
conditions (acids, bases, and boiling) promote unwanted chemistry
at labile functional groups; gentle conditions (cold methanol-
water) are less effective for denaturing proteins. In short, every
procedure alters one’s perception of in vivo metabolism. The goal
is to find a reproducible method that preserves the metabolites
relevant to a particular study. In this section, we present some
general guidelines for minimizing technical error and provide the
sample preparation protocol we use for routine NMR-based meta-
bolomics studies of aqueous metabolites. A more extensive discus-
sion of sample preparation is found in Chap. 2.

2.1. Methods

for Minimizing

Technical Error

Metabolite concentrations observed in tissue extracts and biological
fluids can vary considerably across a dataset. These sample-to-sample
differences originate from both natural variability and technical error.
Whereas biological variance is essential for interpreting metabolic
differences between samples, technical error is simply an obstacle to
meaningful data analysis. Although there are many sources of error
inmetabolomics studies, themaincontributors are inconsistent sample
preparation and technical shortcomings in analytical equipment (e.g.,
resonance overlap, ion suppression, and imprecision in peak picking).
Careful experimental design can control these sources of error.
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Extraction solution conditions. Variation in the amount biological
material used to prepare each sample is one of the primary sources
of technical error in metabolomics. Inconsistency at this level is
directly proportional to quantitative error in the final analysis.
Sample-to-sample differences also affect solution conditions (osmo-
larity, pH, etc.) of the extraction buffer and analytical medium. These
second-order effects alter the extraction efficiencies of sparingly
soluble compounds and complicate data analysis.

A direct method for controlling variation in sample size is to
aliquot tissues on the basis of mass. This approach is most effective
in studies involving large sample sizes and becomes increasingly
error-prone as sample size diminishes. Animal tissues can be
weighed directly on an analytical balance whereas plant samples
generally require prior lyophilization to standardize water content.
An alternative strategy, which is appropriate for cell cultures, is to
prepare samples with uniform optical density and aliquot samples
on the basis of volume. We have found this method to be less
consistent, but considerably more convenient, than centrifuging
cell suspensions and aliquotting samples on the basis of mass.

The volume of solvent present in the extraction medium can
also contribute to technical error, particularly in extractions involv-
ing volatile organic solvents or high temperatures. Solvent loss due
to evaporation can be minimized by using sealed reaction vials.
We have found 22-mL screw-top vessels to be convenient for
parallel extractions; they allow 16 or more samples to be incubated,
centrifuged, filtered and lyophilized simultaneously with conven-
tional laboratory instrumentation.

Preparation of analytical solutions. Solution conditions in the ana-
lytical medium are another major contributor to technical error.
Salinity, pH, and the concentrations of metal ions affect the sensi-
tivity of NMR spectrometers and the efficacy bioinformatics-based
resonance assignments. The strategy for standardizing these condi-
tions is analogous to the methods used for standardizing extrac-
tions; samples need to be prepared with a consistent solute to
solvent ratio.

The most reliable method for ensuring consistent analytical con-
ditions is to analyze raw extracts without any additional sample
preparation. Unfortunately, metabolites present in unconcentrated
extracts are generally too dilute for NMR analyses. Furthermore,
extractions typically employ 1H-containing solvents, which are
another potential source of error in NMR analyses (e.g., spectral
overlap, radiation damping, and receiver overflow resulting from
incomplete solvent suppression). Consequently, NMR-based studies
often prepare analytical solutions from dried extracts dissolved
at relatively high concentrations in perdeuterated solvents. Though
necessary, this strategy introduces some additional complications into
sample preparation and data analysis.
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We employ two strategies for preparing dried extracts: (1)
dissolving all samples in a fixed volume of solvent and (2) preparing
solutions on a mass to volume basis. Of the two approaches, the
fixed volume method is preferable, because it requires the least
amount of sample handling. In studies involving easily standardized
extractions, the fixed volume approach yields technical error of less
than 5% in our hands. The alternative mass-to-volume approach is
appropriate for studies involving large samples (>40 mg extract)
with major sample-to-sample differences in salinity. In these cases,
we prepare analytical solutions from dried extracts dissolved in
8–17 mL of perdeuterated solvent per mg of sample.

Titrating pH in analytical solutions. Rigorous pH control is an
essential component of bioanalytical metabolomics. All of the exist-
ing tools for bioinformatics-based metabolite identification and
resonance assignment require samples to match the solution con-
ditions used in the public databases (4). Minor deviations in pH
(0.01) alter NMR chemical shifts and pH-dependent exchange
broadening alters the intensities of metabolites that are near their
pKa. These effects can have a significant impact on the amount of
time required to assign spectra and the reliability of quantities
analyses.

In our experience, simply adding a buffer to the analytical
medium (up to 25 mM HEPES) is insufficient for controlling pH
to the degree required for automated resonance assignment. Each
sample must be hand titrated using a pH meter equipped with a
small electrode. We adjust sample pH using concentrated acid or
base (~1 M DCl or ~1M NaOD) to minimize titration-related
volume changes. For a trained technician, titrating 400 mL sample
to 7.400 � 0.004 requires about 3 min. Although titration is
tedious, it saves considerable time overall because it allows labor-
intensive data analysis to be replaced with automated resonance
assignments.

Internal standards. The use of internal standards is one of the
simplest means of ensuring data quality. Although highly reproduc-
ible data can be collected without an internal standard, small
changes in NMR line shape, sample dilution, and salt concentration
affect the intensities of NMR signals. Standards control for these
variables and allow biologically relevant variation to be distin-
guished from technical error. Furthermore, clever use of internal
standards allows one to calculate metabolite concentrations relative
to the amount of starting material.

Our strategy is to extract 400 mg of dry weight tissue in 16 mL
of water containing 167 mM of an internal standard. This approach
allows us to relate metabolite concentrations observed in the NMR
tube to the dry weight of the tissue. We typically use HEPES or
MES as an internal standard because these compounds have multi-
ple peaks that are well isolated from biological resonances in 2D
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1H–13C NMR spectra. HEPES is convenient because it acts as an
internal pH indicator (Fig. 1), but MES is probably a better con-
centration reference because of its lower pKa. Neither of these
compounds would be suitable for 1D 1H or 2D homonuclear 1H
experiments because their resonances overlap with those of many
biological compounds.

Although we have only applied the internal standard normali-
zation strategy to aqueous extractions, the principle should be
applicable to other types of extractions. In some cases, biological
internal standards may already be present in the data. Plants grown
in MES buffer, for example, accumulate MES proportionally to
their dry mass (5, 6). Non-metabolized biological internal standards
are extremely useful provided that their normal in vivo concentra-
tions can be calculated.

Entropy in sample order. Metabolite signals observed in either NMR
or MS spectra can be influenced by the order of sample analysis.
In the case of NMR data, systematic changes in shimming over
the course of many samples results in different (usually worse)
line shape. While these variations can, in theory, be corrected
by normalization to an internal standard, data should always be
collected in a random order to minimize systematic error. Further-
more, all NMR and MS data should be collected with technical
replicates. Although technical replication is routine in the MS
world, the NMR community has tended to avoid technical replica-
tion on the grounds that NMR yields high technical reproducibil-
ity. While NMR analysis can be made extremely reproducible

Fig. 1. The 1H chemical shifts of several HEPES peaks are pH sensitive and can be used as
in internal pH reference. The titration curve was generated from a HEPES buffered saline
solution (290 mOsm) in D2O. The dotted lines indicate the observed pKa of HEPES as an
uncorrected meter reading in D2O.
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through careful shimming, we have found that data collected with
automated sample changers can have considerable variation in line
shape. Technical replication and randomized sample order mini-
mize the chance of systematic errors.

Errors in error bars. Careful scrutiny of the various studies that have
quantified the speed of light since 1676 indicates that the value of c
appears to have changed significantly over the last few centuries (7).
Although these results could be interpreted as an exciting physical
phenomenon, the more realistic explanation is that the error bars
given on the light speed estimates were too low. Misleading error
estimates are not unique to measurements of universal constants. In
a landmark 1984 paper, Stuart Hurlbert showed that about half of
the inferential statistics published in ecology between 1960 and
1984 were based on questionable data replication (8). This prob-
lem also applies to metabolomics. Confusing technical replicates
with biological replicates grossly misrepresents real biological vari-
ation and will inevitably lead to erroneous interpretations of statis-
tical tests. Biologically meaningful investigations require careful
experimental design with respect to replication. Although Hurl-
bert’s paper was written for ecology, his recommendations for
experimental design are directly applicable to the design of meta-
bolomics experiments. Mehta et al. have also published a review on
this topic that addresses the problems encountered in high-
throughput studies (9).

2.2. Protocol

for Extracting

High-Abundance

Aqueous Metabolites

The majority of research topics encountered in our laboratory
involve studies of highly abundant water-soluble metabolites.
The protocol presented here is a general method for preparing
samples that is suited to NMR-based assays of amino acids, sugars,
polyamines, polyols, and other thermally stable molecules found
at high abundance in tissue extracts. We prefer this protocol
because it is easy to parallelize, produces low technical error with
relatively high yields, and results in a similar complement of NMR-
observable metabolites from a wide variety of samples (6). The
disadvantages of the protocol include its specificity to hydrophilic
molecules and poor recovery of thermally unstable compounds
(e.g., ATP, and other phosphorylated intermediates). However,
many of the highly abundant metabolites found in tissue extracts
are thermally stable and suitable to this preparation method. Of the
amino acids we have observed, only glutamine (which undergoes
thermal conversion to pyroglutamate) is significantly degraded.

1. Cryogenically homogenize tissue in a ball mill or mortar and
pestle.

2. Lyophilize homogenized samples for 24 h.

3. Aliquot 400 mg dry weight tissue samples into 22-mL screw-
top reaction vessels.
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4. Add 16 mL of boiling ddH2O containing 167 mM HEPES or
MES. HEPES or MES is used as an internal concentration
reference and will have a final concentration of 1–5 mM in
the final NMR analysis solution (depending on the volume of
D2O used).

5. Suspend sealed sample vials in a boiling water bath for 7.5 min.

6. Cool samples on ice for 10 min and then centrifuge reaction
vials in a swinging bucket centrifuge for 30 min at 1,000 � g.

7. Harvest supernatant and pressure filter the mixture through
glass wool to remove any remaining particulate matter.

8. Microfilter the metabolite extract with a 3 kDa molecular
weight cutoff spin concentrator to remove soluble proteins.
Microfilters must be thoroughly washed prior to this step to
remove glycerol from the membrane surface. We wash 25-mL
spin concentrators by running 100 mL of water through the
filters prior to use; even this amount of washing leaves detect-
able levels of glycerol in the final sample.

9. Lyophilize the metabolite filtrates to a dry powder.

10. Dissolve dried metabolite powder in a fixed volume of NMR
solvent (D2O containing 500 mMDSS and 500 mMNaN3). We
use 800 mL for most tissues, but this volume is dependent
the salinity of the tissue. The object with this step is to concen-
trate samples as much as possible without leaving a precipitate
or generating excessively high salt concentrations (which will
be evident from long 90º NMR pulse lengths). All samples
related to a study must be prepared using the same volume of
solvent.

11. Titrate samples with concentrated acid or base (~1 M DCl or
~1M NaOD) to a pH of 7.400 � 0.004.

3. Resources
for NMR-
and MS-Based
Metabolomics Traditional methods for identifying and quantifying molecules

rely on visual inspection of data and hand assignment of signals.
Although this approach is effective when applied to simple mix-
tures, it is too labor intensive to be practical for comprehensive
analysis of complex biological extracts. Modern bioanalytical
metabolomics relies on bioinformatics, databases of metabolite
standards, and specialty software, to make comprehensive analyses
a more tractable challenge. Recent developments in these
tools have dramatically improved the efficiency and reliability of
analyses and have made bioanalytical metabolomics an increasingly
popular research strategy. In this section, we focus on the tools we
have found most effective in our own research; a more complete
listing of useful resources can be found in Table 1.
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3.1. Databases

and Bioinformatics

For NMR-based studies, one of the most important advances in
recent years has been the introduction of three libraries of experi-
mental data collected on pure metabolite standards. Although
several commercial and public NMR libraries have been in existence
for years, the previous databases were either not curated, contained
data collected under a variety of conditions (10), or were not
focused on biologically relevant molecules (11). Furthermore, all
of the earlier resources were restricted to 1D NMR data. In the last
few years, the Madison Metabolomics Consortium (MMC), the
Human Metabolome Project (HMP), and Bruker have expended
considerable resources on collecting NMR data of standard com-
pounds. These libraries are distinct from their predecessors in that
they were collected under defined conditions, include a wide variety
of NMR experiments and, in the case of the MMC and HMP data,

Table 1
List of freely accessible metabolomics resources

Standards Initiative
Metabolomics Standards Initiative (http://msi-workgroups.sourceforge.net/)

Small molecule databases
ChemIDplus (http://chem.sis.nlm.nih.gov/chemidplus)
Human Metabolome Database (www.hmdb.ca)
Madison Metabolomics Consortium Database (http://mmcd.nmrfam.wisc.edu)
Metlin (http://metlin.scripps.edu)
PubChem (http://pubchem.ncbi.nlm.nih.gov)

Metabolic pathway databases
BioCyc (www.biocyc.org)
ExPASy (www.expasy.ch/cgi-bin/search-biochem-index)
KEGG (www.genome.jp/kegg)
Reactome (www.reactome.org)
TAIR (www.arabidopsis.org)
UM-BBD (http://umbbd.msi.umn.edu)

Laboratory Information Management Systems (LIMS)
Sesame LIMS (www.sesame.wisc.edu)
SetupX (http://fiehnlab.ucdavis.edu/projects/binbase_setupx)

NMR and MS databases
BioMagResBank (BMRB) (www.bmrb.wisc.edu)
Human Metabolome Database (www.hmdb.ca)
Madison Metabolomics Consortium Database (http://mmcd.nmrfam.wisc.edu)
Mass Spectrometry Database Committee (www.ualberta.ca/~gjones/mslib.htm)
NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)
NMR metabolomics database of Linkoping (http://www.liu.se/hu/mdl/main)
NMRShiftDB (http://www.nmrshiftdb.org)

NMR Data Analysis software
MetaboMiner (http://wishart.biology.ualberta.ca/metabominer/)
rNMR (http://rnmr.nmrfam.wisc.edu/)
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are freely available. Between the MMC and HMP, spectra of about
1,000 metabolites are freely available over the Web. These data
have made it possible to replace many of the time-consuming
steps of metabolite identification and resonance assignment with
bioinformatics and have paved the way for quantitative NMR-based
metabolomics.

For MS-based researchers, the state of experimentally derived
data libraries is more complicated. GC-MS researchers enjoy a high
degree of standardization with respect to commercial instruments,
instrumental settings, retention time reporting, and mass fragmen-
tation. As a result, several large, high-quality libraries (e.g., NIST
Standard Reference Database) are available as well as specialized
metabolomics libraries (e.g., BinBase from Oliver Fiehn’s labora-
tory). LC-MS has yet to achieve the same level of standardization
enjoyed by GC-MS. As a result, experimental libraries of LC-
MS-observed retention times, exact masses, and fragmentation
patterns are of more limited use. None the less, the HMP has
made a considerable effort in standardizing data collection and
reporting of LC-MS data and has collected spectra of about
2,000 metabolites.

BioMagResBank (BMRB). The BMRB has served the NMR com-
munity for many years as the world repository of NMR data related
to proteins and nucleic acids (12, 13). Recently, the BMRB
expanded its archives to include spectra of small molecules collected
under standardized conditions (14, 15). The defining characteris-
tics of the BMRB for metabolomics are as follows: the data are
freely available, data entries are curated, all of the solvent and NMR
spectral parameters are clearly defined, and the raw spectral data (in
addition to peak-picked and processed spectra) can be downloaded.
Having the raw spectral data at hand is important because it allows
spectra of standards to be overlaid over extracts for hand verifica-
tion of metabolite assignments.

Currently, the BMRB contains more than 7635 NMR spectra
of 1070 unique compounds collected by the MMC. These data
were tailored to tissue-based metabolomics analyses in the design of
their solvent conditions (D2O, pH 7.400 � 0.004, 50 mMNaPO4

for water soluble metabolites; CDCl3 for organic soluble metabo-
lites) and have shown to be useful for identifying metabolites in
complex 1H–13C NMR spectra of a variety of extracts (6).
Although all of the data currently available from BMRB have
been contributed by the MMC, the BMRB and HMP are working
toward incorporating the extensive HMP archives into the BMRB.

The BMRB offers several bioinformatics tools to enhance its
function as a data repository. In contrast to the tools offered by the
Human Metabolome Database (HMDB) and Madison Metabolo-
mics Consortium Database (MMCD), which are best suited to
broader queries of the metabolite literature, the BMRB tools are
primarily designed to make all of the archived data easily accessible.
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An NMR peak query provides a rapid means of locating standards.
Similarly, MS tools allow researchers to translate exact masses
into molecular formulae or locate records on the basis of mono-
isotopic masses. In summary, the BMRB provides an extensive
collection of freely available, high-quality NMR data coupled with
an efficient query system. The BMRB database is available over the
Web at www.bmrb.wisc.edu.

HMDB. The HMDB was officially launched in January, 2007 and
currently holds the honorable distinction of being the world’s
largest repository of NMR and MS data collected under standar-
dized conditions relevant to metabolomics (16). As the name
implies, the HMP’s main focus is human metabolism. To this
end, the Canadian group has amassed a prodigious database related
to the biological significance, metabolic pathways, and physical
properties of metabolites found in humans. The centerpiece of
the HMDB is their collection of experimentally acquired MS and
NMR data. Although there is approximately 30% overlap between
the data collected by the MMC and HMP, the datasets were col-
lected with different purposes in mind. The HMDB’s main focus is
biological fluids, whereas the MMCD is aimed at analysis of tissue
extracts. These different foci provide flexibility to the metabolomics
community with respect to experimental design.

The HMDB offers a number of browsing and bioinformatics
tools for accessing their data and searching the literature. One of
the most useful HMDB features is their “metabocard,” a single
Web page containing approximately 90 data fields summarizing
all of the HMDB information related a particular compound.
This feature provides an efficient mechanism for learning about
your recently identified metabolites. Similar to the MMCD, the
HMDB provides direct links to other databases containing infor-
mation relevant to a metabolite of interest. The links lead to a
multitude of other resources specific to the metabolite in question.
Although the HMDB also offers several bioinformatics tools for
querying the database with experimental MS or NMR data, we
have found the main advantage of the database to be in browsing
the metabolomics literature. The HMDB is unquestionably the
most powerful resource available to the metabolomics community
for this purpose. The HMDB is available over the Web at http://
www.hmdb.ca.

MMCD. TheMMCDwas initially developed as an in-house tool for
identifying metabolites. The MMCD was released to the public in
late 2006 as a bioinformatics resource for bothMS and NMR based
metabolomics (4). In its first year of operation theMMCD received
91,000 visitors from around the globe. Public interest in the
MMCD stems from its collection of 20,000 small molecules of
biological interest gathered from electronic databases and the
scientific literature. These data include the following: chemical
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formula, names and synonyms, structure, physical properties, NMR
and MS data on pure compounds (when available), NMR chemical
shifts determined by empirical and theoretical approaches, calcu-
lated isotopomer masses, information on the presence of the
metabolite in different biological species, and extensive links to
other databases.

In contrast to the HMDB, which excels at browsing metabolite
data, the main advantage of the MMCD is in its bioinformatics
capabilities. For identifying metabolites by name, the text search
engine has a large collection of synonyms and automatically allows
for fuzzy text matching. Users can also enter database ID numbers
from a variety of other public resources (e.g., KEGG and CAS). For
structure-based searches, the MMCD allows queries by molecular
formula, string representation (e.g., SMILES and INCHI) or com-
mon structure files (e.g., .mol and .pdb). Alternatively, the struc-
ture can be drawn directly into a molecular graphics window.
Users can combine as many as six structural criteria in a logical
fashion to further refine the searches.

Perhaps the most powerful attributes of the MMCD are its
metabolite assignment tools. Users can upload experimental
NMR or mass spectra for bulk queries of the database. The
NMR-based searches compensate for differences in magnetic field
strength and filter search results on the basis of the overall patterns
in the submitted peaks. NMR-based queries average about 95%
sensitivity and 4% false discovery when analyzing 2D 1H–13C
HSQC spectra of pure compound mixtures (4). Although the
MMCD’s performance is diminished by chemical shift variation in
real biological extracts, it is still one of the most effective automatic
NMR-based metabolite identification tools in the public domain.

For mass-based searches, the MMCD is primarily designed for
identifying metabolites by exact mass, although the MMCD can
also handle LC-MS, and MS/MS data. Users can specify the ioni-
zation mode, mass accuracy, carbon and nitrogen isotopic compo-
sition and allow for common adducts. Experimental LC-MS and
MS/MS peak lists can be uploaded directly either as flat text files or
in JCAMP-DX format for batch queries. Although sensitivity and
false discovery rates are harder to estimate for MS based queries,
MMCD users can expect between one and three matches for each
mono-isotopic mass entry. As with most mass based queries, the
efficacy of the search engine is primarily dictated by the mass
accuracy and the mass range being queried. MMCD’s main advan-
tage for MS queries is that it allows users to restrict mass queries to
knownmetabolites by using the biological filter provided under the
miscellaneous search engine.

We recently upgraded the MMCD server and software to match
heavy user traffic and will continue to expand the resource as demand
increases. Currently, users can expect metabolite assignments on
1H–13C HSQC spectra in less than 2 s per spectrum. The MMCD
is available over the Web at http://mmcd.nmrfam.wisc.edu.
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3.2. Laboratory

Information

Management Systems

Laboratory information systems (LIMS) are a convenient means of
organizing the large volume of data produced by metabolomics
studies. Ideally, a LIMS should track every procedure that has been
performed and capture all of the information known about a given
sample. In addition to improving record keeping, a well designed
LIMS should also make repetitive data entry tasks more efficient.
Although LIMS can be helpful in many smaller settings, they are
particularly useful for large-scale projects requiring the coordina-
tion of multiple investigators. In this section, we describe Sesame, a
freely available LIMS system used by our laboratory.

We initially developed Sesame as a versatile Web-based LIMS to
support both small and large-scale structural genomics projects
(14, 17). In this application, Sesame has been adopted by a number
of laboratories around the world and has proved indispensable to
our own research. Although older versions of Sesame could be used
for metabolomics, the LIMS was not well adapted to the require-
ments of small molecule studies. In response to this, we developed
“Lamp,” a new module for Sesame specifically for metabolomics.
Lamp is divided into two subparts: one section manages data
related to small molecule standards; the other is devoted to tracking
information related to biological samples. The standards section
captures the source of the standard, the amount of material remain-
ing, the storage location, the investigators who have used the
standard to prepare samples, the protocol used to prepare the
standard. In addition, Lamp captures NMR spectra, chromato-
grams, MS data, and other instrumental data. The section of
Lamp devoted to biological samples was designed to ensure that
the LIMS captured all of the requisite information outlined by the
metabolomics standards initiative (18). These entries include meta-
data (e.g., species, tissue, sex, age, environmental conditions, etc.),
extraction protocols, NMR/LC/MS data, and results derived from
any given study.

One of the most useful features of Sesame is its flexibility.
The LIMS is built on a Java platform, and its Web-based
format makes it accessible to any computer with Internet access.
Furthermore, users can modify the existing format, design their
own data fields, and create lab-specific protocols. Although the plat-
form was designed to give everyone equal access to data, project
managers can restrict access according to the needs of their own
applications. The flexibility of this system allows pertinent informa-
tion from databases, bench scientists, laboratory instrumentation,
and software packages to be seamlessly integrated in a single interface.

Another useful feature of Sesame is its ability to track and read
barcodes. Beyond the obvious application of identifying samples
by bar code, the system allows specific actions to be linked to a
barcode scanner. This is particularly useful in repetitive tasks such as
performing inventories of standards. The Sesame LIMS is freely
available from http://www.sesame.wisc.edu.
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3.3. Software for NMR

Data Analysis

Bioanalytical NMR-based metabolomics studies often require
more than a thousand resonances assignments. Currently, this is a
laborious task that is subject to human error and is difficult to
document. Chemical shifts of many metabolites are subject to
unpredictable variations resulting from uncontrolled differences
in solution chemistry between samples. Consequently, resonances
assigned in one spectrum cannot be transferred directly to other
spectra. Although there are several effective software tools for
identifying metabolites in complex NMR data (e.g., MMCD,
metaboMiner, Chenomx, Bruker Amix, and BioRad KnowItAll),
none of the existing tools were designed for assigning resonances
across multiple spectra. As a result, every spectrum must be
assigned individually. Using existing software tools, this task can
require weeks of visual data inspection.

To make comprehensive NMR data analysis more feasible, we
developed an open source software (rNMR) (19) written for the
R statistical software environment. rNMR operates on a fundamen-
tally different principle from existing NMR tools; rather than
assigning peaks, rNMR extracts user-defined regions of interest
(ROIs) from spectra. Unlike peak lists, which are static summaries
containing limited information, ROIs contain all of the NMR data
present with a defined set of chemical shift ranges and can be
visually inspected. rNMR displays ROIs extracted from hundreds
of samples side-by-side, and allows users to dynamically manipulate
the size and placement of ROIs while simultaneously visualizing all
of the NMR data related to an assignment. This strategy allows
thousands of resonances to be visually inspected in a few minutes.
Moreover, rNMR allows users to correct assignment errors at any
stage of an analysis by simply adjusting the bounds of the affected
ROI. Because all resonance assignments are made within the con-
text of a defined chemical shift range, rNMR enforces consistent
resonance assignments across hundreds of samples while maintain-
ing flexibility to variations in chemical shift.

In addition to simplifying resonance assignment procedures,
rNMR also makes quantitative analyses more transparent. Quanti-
tative algorithms are based directly on the ROI data displayed to
users, and the underlying NMR data behind any data point can be
examined by simply clicking on the appropriate ROI. Because
rNMR generates quantitative data on the fly from rawNMR spectra
and a table containing the boundaries of each ROI, any rNMR
analysis can be replicated by other researchers.

We initially developed rNMR as an in-house tool to solve
practical problems encountered in our own research. Since its initial
development, rNMR has expanded to include a broad range of
peak picking, data visualization, and metabolite assignment tools
that simplify data analysis. In addition, rNMR’s architecture and
licensing (general public license version 3) give users the freedom
to customize and redistribute the program. The rNMR program,
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extensive help documentation, instructional videos, compiled stan-
dards data from the BMRB, and example datasets are available free
of charge from http://rnmr.nmrfam.wisc.edu.

4. Mass
Spectrometry
Methods
for Identifying
and Quantifying
Metabolites

Metabolomics researches fall into two categories: those who use
mass spectrometry (MS), and those who wish that NMR had the
sensitivity of MS. Although the respective advantages of NMR and
MS are well known, it is worth mentioning that despite the clear
superiority of MS with respect to detection limit, MS has two
fundamental challenges: nonuniform ionization efficiencies and
translating identified masses into specific metabolites.

Direct analysis of metabolic extracts by MS has been reported
(20, 21), but MS analysis typically requires some form of fraction-
ation to reduce ionization artifacts. Traditionally, this is handled by
online coupling of liquid (LC) or gas chromatograph (GC) with the
mass spectrometer. GC-MS is used extensively for profiling non-
polar compounds and derivatives of some polar molecules (22, 23).
Many of the technical challenges associated with GC-MS based
research have been resolved, but LC-MS is becoming increasingly
popular for metabolomics analyses because of its compatibility
with a wider range of biological compounds (24–30). The topics
addressed in this section cover several new LC-MS compatible
methods that have made identifying and quantifying metabolites a
more tractable problem. A detailed overview of mass spectrometry
methods is given in Chap. 4.

Quantification with selective isotope labeling. The analytical preci-
sion of ESI-MS is primarily limited by two related variables: ioniza-
tion efficiency and matrix effects (31). Ionization efficiency, or the
percent of a molecular species that is ionizable, depends on a
number of instrumental factors, molecular characteristics and solu-
tion conditions. Instrumental factors, particularly pressure and
temperature at the ion source, are difficult to control and can
produce significant run-to-run and day-to-day variations. Matrix
effects, which occur when ions other than the target compound
compete for charge, are also problematic because minor changes in
the matrix can have a pronounced effect on ionization efficiency.
Although chromatography can reduces these problems, observed
peak intensities in metabolomics studies are inevitably influenced by
factors other than metabolite concentrations (32).

One method for improving the quantitative performance of
MS is to relate observed signals to isotopically labeled (2H, 13C,
15N, or 18O-substituted) internal standards for each of the target
molecules. Some care should be taken with 2H labeled compounds
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to ensure that labels are limited to nonlabile atoms and that the
perdeuterated positions do not interact with the chromatographic
columns (perdeuteration can lead to chromatographic shifts)
(33, 34). The main advantage of internal isotopic standards is that
they coelute with their unlabeled counterparts and thus can be used
to normalize variation in ionization efficiency and matrix effects.
In practice, this entails dividing peak intensities (or volumes) of
unlabeled compounds by the intensities of the corresponding
labeled standards. Accurate concentrations of the unlabeled com-
pounds can then be calculated by multiplying the normalized sig-
nals by the known concentrations of the standards. The primary
disadvantage of this approach is that an isotopically labeled standard
is needed for every compound of interest, which becomes difficult
in comprehensive studies because of the price (~$100/mg) and
potential unavailability of labeled standards.

There are several alternatives for larger-scale projects in which
absolute quantification can be replaced by relative abundance. One
method involves in vivo isotopic labeling of a control sample using
an economical substrate (e.g., Escherichia coli grown on U–13C
glucose or acetate). A fixed amount of the labeled mixture pro-
duced in vivo is added to each of the test samples, and the relative
abundances of metabolites are computed by comparing the signal
from labeled molecules to their corresponding unlabeled counter-
parts (24, 29, 35, 36). This strategy works well for most small free
living organisms (yeast, bacteria, and tissue cultures) and is applica-
ble to some whole plants. However, the approach is limited in
mammals because of the difficulty in achieving uniform isotopic
labeling and the prohibitive expense.

An alternative strategy for calculating relative abundances of
metabolites is to use selective chemistry to isotopically label mole-
cules containing a particular functional group (Fig. 2) (37–41).
The general strategy for the selective chemistry approach is similar
to the in vivo approach in that an isotopically-labeled control
mixture is used as a concentration reference sample for a series of
test samples. Quantification based on selective chemistry requires
each test mixture to be derivatized in the same manner as the
isotope-labeled control. To distinguish between molecules originat-
ing from the test and control mixture, test samples are derivatized
with unlabeled reagents (natural abundance levels of isotopes),
whereas control mixtures are derivatized with isotopically labeled
reagents. The “heavy” control mixtures are then mixed with “light”
test samples creating a composite mixture. When analyzed, the
heavy and light derivatives coelute from the LC-column and appear
in the mass spectrum as pairs of peaks with a mass-shift equal to the
difference in mass of the two isotopic labels (Fig. 3). The ratio of
peak areas or intensities for each pair can then be used to compute
the relative metabolite abundances in each of the test samples.
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The selective chemistry approach to quantification offers a
number of advantages to the metabolomics community. Most
importantly, it improves quantitative precision by normalizing var-
iations in detection sensitivity resulting from ionization suppression
(42–44) and variability in retention time between runs (34). This
is possible because the “light” and “heavy” metabolites coelute
within a single run and therefore have identical retention times
and are electrosprayed from identical solution conditions. A second
benefit of using a derivatization reagent is that it can help identify a
metabolite by indicating the presence of a certain functional group.
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Fig. 2. Isotopic labeling chemistry under different reaction conditions. Isotopic shifts resulting from differential labeling of
amines with (top) methylacetimidate, where a 2 Da shift is produced from the two 13C atoms; (middle) formalin, where
primary amines acquire two 13C methyl groups to produce a 2 Da shift, and (bottom) cholamine, where 2H on all three
methyl groups produce a 9 Da shift. (Abbreviations: MeOH, methanol; TEA, triethanolamine; HBTU, 2-(1H-benzotriazole-1-
yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; and DMSO, dimethyl sulfoxide).

Fig. 3. Representative extracted ion chromatograms and a mass spectrum for cholamine-labeled fatty acids (1). Light and
heavy labeled fatty acids coelute from reverse phase LC (left) and are easily distinguished by MS by their characteristic
9 Da shift (right). Amines labeled as shown in Fig. 2 yield analogous results.
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By employing a number of labeling strategies, one can target vari-
ous classes of compounds. Furthermore, well-designed labeling
reagents can improve chromatographic separation, enhance detec-
tion sensitivity and yield low coefficients of variation (37–39, 45).
Although it is too early to judge the efficacy of this approach in
metabolomics settings, selective chemistry promises to be a power-
ful, cost-effective, tool in the MS metabolomics arsenal.

Isotope constrained formula assignments. High-resolution MS spec-
tra of tissue extracts contain hundreds to thousands of peaks.
Assigning identities to each of these features is far from trivial.
Although common metabolites can be identified by GC-MS using
the well developed commercial libraries, these libraries are of little
use for novel compounds. Furthermore, existing LC-MS/MS liter-
ature (primarily from theHMDB) is of limited utility because of the
large platform-dependent variability present in LC-MS systems.
Currently, LC-MS analysis and novel compound identification
require more extensive analytical techniques than those used for
GC-MS.

One analytical strategy that can be used for identifying meta-
bolites is to calculate elemental compositions of mass peaks
obtained from high accuracy mass measurements. This approach
is only feasible for compounds of low molecular weight and
requires very high mass accuracy estimates, such as those obtained
via FT-ICR MS (Chap. 4). Unique molecular formula assignments
of compounds less than 250 amu typically require a mass accuracy
of 3 ppm. As mass increases, or mass accuracy decreases, the num-
ber of matching formulas balloons exponentially.

Computational and experimental constraints can be used to
reduce the number of possible formulas for higher molecular
weight species. Both natural abundance isotopic distribution (46)
and heuristically-derived limits on elemental composition (47) are
effective means of constraining molecular assignments. A more
experimental approach is to create mixtures of uniformly substi-
tuted isotopomers and measure the mass shift associated with
isotopic labeling (48). For example, a spectrum can be collected
for a mixture of unlabeled, fully 13C labeled, and fully 15N/13C
labeled versions of a molecule. Mass shifts observed in the spectrum
of this mixture can then be used to calculate the number of carbon
and nitrogen atoms present in a compound, and these, in turn, can
be used to restrict the number of possible formula assignments (49).
Such empirically-determined constraints greatly simplify molecular
formula calculations and allow unique formula assignments to be
made at much higher mass values (Fig. 4).

Metabolomics applications of the isotopically-constrained
formula assignment method require uniform isotopic labeling.
As mentioned previously, in vivo 15N and/or 13C isotopic
labeling is relatively straightforward and cost-effective in small free
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living organisms or tissue cultures (50). However, some care should
be taken to ensure that metabolites are uniformly labeled. Partial
labeling results in excessive spectral complexity resulting from the
various partially substituted isotopomers. We have recently added
several computational resources to the BMRB as a tool for research-
ers who are interested in using isotope constrained assignments (49).

5. NMR Methods
for Identifying
and Quantifying
Metabolites Although NMR is a relatively insensitive technique when compared

to MS, NMR-based analyses enjoy several advantages over MS.
Specifically, NMR peak intensities scale proportionally with con-
centration, NMR is sensitive to a wide variety of metabolite struc-
tures, and NMR analyses require little to no sample preparation.
Although NMR has become a popular tool for statistics-based
metabolomics, NMR-based bioanalytical studies are relatively
rare because of practical challenges in data analysis. However, the
bioinformatics and software tools discussed in Sect. 3 have largely
eliminated these practical constraints.

In this section, we discuss several alternative strategies for collect-
ing quantitatively reliableNMRdata that can be used for bioanalytical
metabolomics. A unifying theme of the techniques presented here is
that they provide a mechanism for separating overlapped NMR sig-
nals. Overlapped signals, such as those found in 1D 1H spectra
of biological extracts, scale proportionally to the total overlapped
spectral density and can neither be assigned nor quantified (6).

Fig. 4. Number of calculated formulae with and without nitrogen and carbon constraints
for 4,918 unique formulae derived from the BMRB database assuming mass accuracy of
�3 ppm.
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Although 1D 1H NMR is a reproducible chemometrics tool (51),
bioanalytical studies require well-defined spin systems for resonance
assignments and isolated peaks for quantification (6). Currently,
there are three general strategies for producing the sufficiently sparse
spectra required for quantitative studies: mathematical deconvolu-
tion of spectra, multidimensional NMR, and selective pulse
sequences (see Chap. 6 for a detailed description of NMR principles
and methodologies).

5.1. Mathematical and

Statistical Methods

As a rule, signals correlate very well with themselves. Not surpris-
ingly, various peaks from the same compound are highly covariant
across multiple spectra. The Nicholson laboratory recognized this
several years ago and formalized the use of covariance matrices to
group resonances of various compounds (52). This approach has
the advantage of allowing investigators to use 1D 1HNMR spectra,
the fastest and most sensitive NMR experiment, and still provide a
mechanism for dispersing resonances from individual compounds.
However, the covariance approach does not provide a mechanism
for quantification. As a result, quantitative estimates of peaks iden-
tified through covariance are still rooted in the dubious metric of
overlapped 1D 1H signals.

An alternative approach developed by Weljie et al. is to fit
overlapped signals with modeled peaks and base quantitative esti-
mates on the modeled data (53). Resonance deconvolution has
been used for decades in a wide variety of traditional NMR studies
and is a well established method for separating overlapped peaks.
The curve fitting method introduced by Weljie, A.M. et al. is proba-
bly the most reliable approach for quantifying metabolites from
overlapped 1D 1HNMR data and has become the preferred strategy
for many bioanalytically oriented researchers. However, resonance
deconvolution is a finicky hand-manipulated process whose perfor-
mance is affected by the skill of the person operating the software.
A commercial implementation of Weljie’s method, Chenomx,
removes some of this uncertainty. However, Chenomx is dependent
uponmatchingmetabolites with one of the standards present in their
commercial library and thus can be ineffective for some compounds.
In addition, Chenomx is expensive and only supports 1D NMR
analyses. Despite these disadvantages, resonance deconvolution is a
viable method for deriving quantitative information from overlapped
NMR spectra and may be an attractive alternative to researchers who
are constrained to using 1D NMR.

5.2. Multidimensional

NMR Methods

One of the most effective methods for mitigating problems asso-
ciated with resonance overlap is to use one of the myriad of multi-
dimensional NMR experiments that have been developed by
bimolecular NMR spectroscopists (Chap. 6). In contrast to other
methods for separating overlapped resonances discussed here, mul-
tidimensional NMR has the significant advantage of contributing
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empirically determined structural information about the observed
resonances. This is of no small consequence to bioanalytical meta-
bolomics studies, which must differentiate between many structur-
ally similar metabolites.

Several groups have applied multidimensional NMR to meta-
bolomics (5, 54–56), but practical challenges have made this
technique unpopular for routine studies. 2D pulse sequences
require longer acquisition times, are less quantitatively robust, are
prone to data artifacts, and require more NMR expertise than
traditional 1D spectroscopy. In this section, we provide guidelines
for mitigating these problems and discuss the trade-offs of various
multidimensional NMR strategies.

Resolution versus sensitivity. Two categories of 2DNMRhave proven
effective in metabolomics: 1H–1H homonuclear and 1H–13C het-
eronuclear experiments. These categories have several inherent
trade-offs that must be considered in the experimental design
phase of any bioanalytical metabolomics study. Homonuclear pro-
ton experiments are more sensitive because of the 100% natural
abundance of 1H and its favorable magnetogyric ratio. However,
metabolite signals in 1H–1H experiments occupy a narrow band-
width (roughly 10 ppm), andmost 1H–1H pulse sequences produce
multiple signals from each resonance (i.e., symmetrical cross-peaks,
and diagonal peaks). The low bandwidth and signal redundancy
result in resonance overlap problems. In contrast, 1H–13C
sequences offer superior separation of metabolite signals because
of carbon’s larger bandwidth (roughly 180 ppm) and because most
1H–13C pulse sequences produce fewer signals per metabolite.
Although modern 1H-detected 13C experiments are significantly
more sensitive than the traditional direct detection methods used
in 1D–13C experiments, the low natural abundance of carbon
(1.1%) limits metabolite investigation in unlabeled samples. The
lower sensitivity of 1H–13C experiments can be partially mitigated
by concentrating NMR samples (we prepare samples at up to 10 �
higher concentrations than found in vivo) or by isotopically enrich-
ing samples. However, sample limitation and biological constraints
often make concentration or isotopic enrichment unfeasible. As a
result, manyNMR-based studies must either choose high sensitivity
experiments at the cost of increased spectral overlap, or better signal
separation at the cost of lower sensitivity. The correct choice is
governed by the biological goals of a study, the amount of material
that can be obtained, the concentrations of target metabolites, and
the complexity of the mixture being investigated.

Additional practical considerations may influence the decision
between 2D homonuclear 1H and heteronuclear 1H–13C
experiments. Studies involving 2D 1H–1H experiments require
considerably longer NMR acquisition times to adequately
resolve metabolite signals. In addition, chemical shift variations
are more problematic in 1H–1H spectra because 1H shifts are
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more affected by solution conditions than 13C shifts. Consequently,
bioinformatics-based assignments of 1H–1H data are less reliable,
and metabolite identifications are more ambiguous. On the other
hand, 1H–13C analyses at natural abundance 13C levels requires
40 mg of metabolites per NMR sample (roughly 400 mg starting
material). If sufficient starting material can be obtained for a single
representative sample, then we recommend using 1H–13C analysis
of a concentrated sample for metabolite identification purposes.
These assignments can then be transferred to 1H–1H data for
analyses of more dilute test samples. For investigators who are
new to 2D NMR, we recommend learning the metabolite identifi-
cation and quantification process using a biological model that
allows all samples to be analyzed via 1H–13C HSQC (heteronuclear
single quantum coherence) or HMQC (heteronuclear multiple
quantum coherence). This recommendation is based on the relative
ease of assigning and quantifying 1H–13C data.

Metabolite identification. The introduction of the BMRB, MMCD,
and HMDB databases has dramatically reduced the length of time
required to assign NMR spectra. These resources allow researchers
to submit peak lists from experimental data and return a list of
possible metabolite identifications. Currently, the results of these
queries must be verified by overlaying spectra of standards (avail-
able from www.bmrb.wisc.edu) onto a representative extract.
Step-by-step instructions for validating resonance assignments
are given below. Although our methods may be adapted to some
1D NMR applications, the procedures described here primarily
refers to the analysis of 2D 1H–13C or 1H–1H NMR spectra.
As mentioned above, we have found that 2D 1H–13C HSQC data
are easier to assign than 1H–1H experiments and recommend that
new investigators learn the assignment process with 1H–13C data.

5.2.1. Protocol for

Metabolite Identification

1. Collect a high-resolution sensitivity enhanced 1H–13C
HSQC spectrum (e.g., Varian pulse sequence gHSQC) of a
representative sample. This will likely require 512–2,048
increments in the indirect dimension, four scans, and as long
an acquisition time as the decoupling strategy allows. The goal
of the initial spectrum is to produce one high-quality, unam-
biguous dataset with minimal peak overlap to be used for
metabolite identification purposes. It is virtually impossible to
resolve all of the signals, but most aliphatic signals are dispersed
in 1,028 indirect increments. It is important to match the
sample’s solvent conditions to those used by either the MMC
or HMDB because bioinformatics-based assignments require
predictable peak locations.

2. After a high quality spectrum has been collected, process the
data with the minimum appropriate window function (exces-
sive line broadening will mask J-coupling), reference the

7 Novel NMR and MS Approaches to Metabolomics 219

http://www.bmrb.wisc.edu


chemical shifts, peak-pick the data, and submit the peak list to
the MMCD, HMDB, or BMRB. Accurate chemical shift refer-
encing is critical for bioinformatics-based assignments.

3. Bring the experimental data into rNMR (19) for analysis
(rNMR supports conversions of data in Bruker, Varian, or
NMRpipe formats to the Sparky format used by rNMR) and
download spectra of the possible matches from either the
HMDB or BMRB. We have converted most of the BMRB
1H–13C HSQC and 1H–1H TOCSY standards to Sparky for-
mat, and these data can be downloaded in bulk from http://
rnmr.nmrfam.wisc.edu.

4. Overlay the spectra of each potential metabolite onto your high
resolution spectrum of the representative extract. Reliable
metabolite assignments must have all of the correct 1H and
13C chemical shifts, correct peak multiplicities, and intense
peaks should show long-range 1H–13C coupling consistent
with the standard (Fig. 5). Some tolerance can be given for
chemical shift variation (� ~0.025 ppm), provided that all of
the other criteria are fulfilled. A few resonances are more vari-
able than others. Specifically, malate, citrate, and a number of
aromatic resonances can have considerable variation despite
careful pH titration. Ambiguous metabolite assignments can
be checked by adding pure standards to the extract; correct
assignments will show increases in peak intensity proportional
to the amount of standard added.

The metabolite identification protocol outlined here will pro-
vide reliable assignments in most cases, but this method of analysis
is not unequivocal. Important assignments (i.e., those that are

Fig. 5. Two-dimensional 1H–13C HSQC NMR spectrum of sucrose from the BMRB (red)
overlaid onto an aqueous whole-plant extract from Arabidopsis thaliana (blue). Black
boxes indicate long-range proton carbon couplings used to validate the assignment.
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shown to have significant changes between groups) should be
validated by an independent analytical technique.

Calculating molar concentrations from 2D NMR spectra. Multidi-
mensional pulse sequences have significant quantitative problems
resulting from off-resonance effects, incomplete resonance transfer,
complex relaxation pathways, decoupling artifacts and mixing times.
These variables make peak intensities (and volumes) an unreliable
metric for quantification (Fig. 6). Several laboratories are developing
more quantitatively reliable versions of common bimolecular NMR
pulse sequences (57–59). Unfortunately, these efforts have yet to
produce experiments that are sufficiently robust for bioanalytical
metabolomics. However, we have developed a practical approach
to metabolite quantification that allows researchers to use any
NMR pulse sequence. The basic feature of our method is that
we do not control quantification through pulse sequence design.
Instead, we relate observed peak intensities to those of mixtures of
pure standards of known concentration. Differences in relaxation
rates and shimming are controlled by normalizing observed metab-
olite signals to an internal standard. The metabolite quantification
strategy described here and the fast data collectionmethod described
in the next section are the components of our fast metabolite quan-
tification (FMQ by NMR) approach, which is the basis of all of our
laboratory’s routine metabolomics work.

Fig. 6. Off-resonance effects are one of the many factors that can influence peak intensities observed in NMR experiments.
In this example, the intensities in 1H–1H TOCSY were measured as a function of 1H frequency offset. The peak intensity is
highest when the peak is closest to the transmitter frequency and lowers as the transmitter is tuned to higher or lower
frequencies.
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5.2.2. Metabolite

Quantification Protocol

1. Identify all metabolites present in an extract (see Protocol for
metabolite identification).

2. Prepare three mixtures containing all of the identified metabo-
lites at 2, 5, and 10 mM. Although standardized metabolite
intensities are linear well beyond the range of these standards
(�20-fold), the concentrations of standards should be adjusted
to match the approximate range of expected concentrations.
Mixtures should be prepared at high volume to minimize
weighing errors. All standards and extracts should be titrated
to pH 7.400 � 0.004.

3. Include 5 mM of an internal standard in all of the standards
mixtures and extracts to serve as an internal concentration
reference. For 1H–13C NMR studies, we recommend HEPES
or MES because both compounds have multiple isolated peaks
that do not overlap with biological compounds. HEPES is
convenient because it acts as an internal pH indicator, but
MES is probably a more reliable concentration reference
because of its lower pKa.

4. Collect spectra of extracts and concentration reference
samples under identical NMR acquisition conditions at the
same time using the same instrument. Every sample, including
the concentration reference samples, should be collected twice to
produce two technical replicates for each sample. The sample
order should be randomized. Each test sample should have at
least three (preferably many more) independent biological repli-
cates. From a statistical perspective, it is much better to have
many independent biological replicates than to analyze many
metabolites (large alpha corrections, such as Bonferroni correc-
tion, must be made in studies that use multiple comparisons).

5. Measure the peak intensities (area for 1D, peak height for 2D)
of nonoverlapped peaks from extracts and the concentration
reference samples. Although peak area is a robust metric in 1D
NMR, we have found 2D peak volumes to be considerably less
reliable than peak heights when used in this procedure
(regardless of the NMR analysis software).

6. Normalize signals observed in each spectrum to the average
signal of the dispersed HEPES (MES) peaks. Raw intensities
can be used without normalization, but any variations in salt
concentration (or paramagnetic relaxation agents) between sam-
ples will be erroneously interpreted as differences in metabolite
concentrations. If samples and standards are osmotically identi-
cal, then normalization is undesirable because it introduces some
technical error. However, many NMR probes are highly salt
sensitive, and even the standards may show strong nonlinear
effects of salt. If in doubt, it is better to normalize to the internal
standard and accept a small increase in technical error.
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7. Average normalized peak intensities across technical replicates.

8. Regress normalized peak intensities of the standards to produce
a concentration versus peak intensity equation for each dis-
persed signal.

9. Calculate the observed concentrations for each normalized
peak in the test samples using the equations derived from the
standards samples.

10. Average concentration estimates across all dispersed peaks from
each molecule.

The protocol described here produces concentration estimates
with as little as 2.7% technical error from complex 2DNMR spectra
(Fig. 7.) (6). The main disadvantage of this approach is its depen-
dence on standards, many of which are unavailable or are

Fig. 7. (a) Concentration estimates (N ¼ 168) based on two-dimensional 1H–13C HSQC
and (b) one-dimensional 1H NMR data. Estimates are plotted as a function of the known
concentration of metabolites in synthetic mixtures. Dotted lines indicate the ideal regres-
sion (slope 1), and the solid lines indicate the best-fit regression.
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prohibitively expensive to use in the quantities required for this
procedure. If the requisite standards can be obtained, however,
then this strategy produces reliable quantitative information from
most of the existing NMR pulse sequences. Moreover, the internal
concentration references we use to control for differences in longi-
tudinal (T1) relaxation, and other variations between samples, can
be introduced early in the sample preparation process to relate
observed signal intensities to biologically relevant concentrations.

Fast multidimensional experiments. Although multidimensional
NMR has seen qualitative applications to metabolomics for many
years (5, 54–56), very few studies have used the technique for
quantitative purposes. One reason for this is that multidimensional
NMR spectra take longer to collect than 1D 1H NMR spectra,
although the long acquisition times of 2D experiments have been
somewhat exaggerated in the metabolomics community. Over the
years, protein NMR spectroscopists have developed a wealth of
techniques for reducing the requisite acquisition times of multidi-
mensional experiments. These techniques range frommathematical
approaches for nonlinear sampling of data (60), to pulse sequences
that encode the indirect dimensions using gradients (61) and opti-
mization of pulse angles (62). All of these techniques are applicable
to metabolomics (Chap. 6), but the easiest way to save time is to be
judicious in setting up the NMR acquisition parameters.

We have shown that a carefully adjusted 2D 1H–13C HSQC
spectrum allows metabolites with concentrations over ~500 mM in
the NMR tube (30–40 metabolites using our sample preparation
methods) to be quantified in about 10 min (6). The secret to our
approach is in the prior identification of compounds. As discussed
above, a single high-resolution HSQC of a representative sample
can be used to identify the abundant metabolites present in an
extract. After the metabolites have been identified and the peaks
have been assigned, one can capitalize on the assignments by
reducing the number of indirect points and time to the minimum
required to resolve two signals from each target molecule. These
time savings can be achieved while maintaining high quantitative
precession (technical error ~3%) (6).

The primary factor that contributes to lengthy 2D experiments
is the number of increments collected in the indirect dimension.
Time savings are proportional to the number of increments that
can be eliminated from the acquisition. Because resolution in the
indirect dimension is a function of the number of increments and the
indirect spectral-width, achieving adequate resolution in the minimal
amount of time usually involves trimming both the spectral-width
and the number of increments. If the indirect spectral-width is cut
in half, then the number of indirect points can be halved without
affecting resolution. The spectral-width can be reduced well beyond
the point where resonances are no longer contained within the
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spectral window. Resonances with signals outside of the spectral-
width will wrap back into the spectral window with a chemical shift
that is equal to their original shift plus or minus a multiple of
the spectral-width (Fig. 8). In more extreme cases, resonances may
be wrapped multiple times. If the original chemical shifts and the
spectral-width are known, then a heavily wrapped spectrum can be
unwrapped by using simple arithmetic. Spectral folding may result in
undesirable overlap between analytically important signals, but over-
lap can often be alleviated with small adjustments of the indirect
carrier frequency. As discussed above, off resonance effects play a
major role in observed peak intensities. After acceptable settings for
the spectral-width, number of increments, and the transmitter offset
have been found, it is critical that these values be kept constant across
all of the test samples and standards.

5.3. Selective NMR

Methods

Selective NMR is a back to the future idea revived from the early
days of protein NMR. Although selective experiments have been
largely outdated in protein NMR by modern multidimensional
pulse sequences, the technique is appropriate for targeted meta-
bolic studies. Selective NMR works by carefully sculpting the exci-
tation pulse to cover a narrow bandwidth. This, in combination
with other sequences such as TOCSY, allows individual spin sys-
tems to be isolated from amazingly complex mixtures (Fig. 9).

Fig. 8. Quantitative 1H–13C HSQC NMR spectrum of a synthetic mixture of 26 metabolites.
The spectral width in the indirect dimension was reduced to allow for shorter acquisition
times. Blue peaks are in their correct locations, whereas red peaks have been wrapped
into the top of the spectrum from their normal downfield positions.
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Similarly, the technique can be used to selectively remove over-
powering resonances from a spectrum. Dan Raftery’s group first
introduced the idea to the metabolomics community by showing
that signals from minor components of honey could be accurately
isolated and quantified without being influenced by the large glu-
cose and fructose signals (63). One of the most powerful aspects of
the selective TOCSY is that data can be collected very quickly
(~1 min per spectrum). For studies requiring accurate quantifica-
tion of a few metabolites in complex mixtures, this is one of the
fastest NMR techniques available.

One must keep a few practical considerations in mind when
using selective pulse sequences. Selective experiments require hand
tuning of the excitation pulse, and this tuning may change from
sample to sample if the target metabolite is subject to chemical shift
variation. Secondly, selective experiments lose their time advantage

Fig. 9. (a) Selective 1D 1H–1H TOCSY for lactate in live red blood cells. (b) Standard 1D 1H
NMR spectrum of the same sample. Cells were labeled with [U–13C]-glucose, the triplet-
like splitting observed in the TOCSY arises from [U–12C]-lactate (center peak) and fully
labeled [U–13C]-lactate (two satellite peaks).
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in studies involving multiple metabolites. After the number of
target metabolites reaches about ten, then a full 2D 1H–1H
TOCSY or 1H–13C HSQC is more efficient and does not require
hand manipulation of the pulses between experiments. However, if
a study only calls for analysis of a few molecules, then selective
TOCSY is one of the best tools for the job.

6. Future Prospects

Technological advances of recent years have dramatically
increased the efficiency with which metabolites can be identi-
fied and accurately quantified. High quality empirical libraries,
bioinformatics-based spectral assignment tools, improved analytical
software, and practical methods for identifying and quantifying
NMR and MS signals in complex spectra have taken the field a
step closer to the automation enjoyed by mainstream bioanalytical
methods. Despite these advances, bioanalytical metabolomics is
still in its early development and is far from capitalizing fully on
state-of-the-art NMR andMS technology. A significant proportion
of signals in every study go unassigned, bioinformatics tools
suffer from unacceptable false discovery rates, quantification
requires ad hoc correction of quantitatively unreliable data, and
specialized expertise is required to collect, analyze, and interpret
data. Finding practical solutions to these problems is paramount
to bioanalytical metabolomics and is a promising area for future
technology development.

Acknowledgments

This work was supported by the National Center for Research
Resources of the National Institutes of Health under grant P41
RR02301; I.A.L. was the recipient of a fellowship from the
NHGRI 1T32HG002760.

Glossary

1D One-dimensional

2D Two-dimensional

Bioanalytical metabolomics Comprehensive quantitative analysis
of metabolites in complex biological
samples
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HSQC Heteronuclear single quantum
correlation

MS Mass spectrometry

NMR Nuclear magnetic resonance
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